
AP-A283 569,•!iI 11 II)!]1)111)11 [,111)1 11313 1"11 ib

RESEARCH AND DEVELOPMENT TECHNICAL REPORT
CECOM-TR-94-10

Identification, Integration and Tracking of
* eSftware System Safety Requirements

Leonard L. Russo
CECOM Safety Office

•'"7.

August 1994 AUG 191

DISTRIBUTION STATEMENT:
Approved for public release;

distribution is unlimited.

'(94-26389iliili II'I 11 I IliI II
CECOM
U.S. ARMY COMMUNICATIONS-ELECTRONICS COMMAND
CECOM SAFETY OFFICE ATTN: AMSEL-SF-SEP
FORT MONMOUTH, NEW JERSEY 07703-5024

98

NOTICES

Disclaimers

The findings in this report are not to be construed as an
official Department of the Army position, unless so desig-
nated by other authorized documents.

The citation of trade names and names of manufacturers in

this report is not to be construed as official Government
endorsement or approval of commercial products or services
referenced herein.

I Form AM~wW
REPORT DOCUMENTATION PAGE O 0M No. 07G,-O~8

P.*c rPOV.1 bU*. foe th,4 colbecacA 0$ 4ftoemacbef ,. mu ted to a•,•. h. a mu ta..r~n e. Ind • •udin thetm oe re•~wn lnu• w seed• eihoN is.uu
oaeen -• ma,tahnma Ohe data Agdi; -~ coemwln, a~nd rev.w.A~g the oI•ot'on of incmta. s~e•d .€omme- earudeg d 1,i m b ede tmae ti WnV Q• tupect of diVi
€alci4o $ lAVOMISUOn. lndudiii thongu roedcn thusl bumrdn. to WaW,hnqton I•ue~ ws uuc, Oi~ee'.ar•togt foe 0mnormati OwsIaw o rtod U, 1 S JekSh~ghWW. Suib h104. ArJjlet oA ';Z202.-430, aM tO the O/fflic of Mlanaqemeflt ad Itdg PIeerwk Reuto Prolec (0"704-0 IIa) Wauhing•,oo n•0

1. AGENCY USE ONLY--(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I August 1994 ITechnical Report
4. TITLE AND SUBTITLE 5S. FUNDING NUMBERS

IDENTIFICATION, INTEGRATION AND TRACKING OF SOFTWARE
SYSTEM SAFETY REQUIREMENTS

Od AUTHOm(S)

Leonard L. Russo

7. PERFORMING ORGANIZATION NAME(S) ANDATESS.REORT T. PERFORMING ORGANIZATION
US Army Communications-Electronics Command (CECOM) REpORTNUMBER

CECOM Safety Office CECOM-TR-94-10
ATTN: ATM OSEL-SF-SEP

Fort Monmouth, NJ 07703-5024
7. SPONSORING/MONITORING AGENCY NAME(S) AND ADODRESS(ES) 10. SPONSORING MONITORING

AGENCY REPORT NUMBER

11. SUPPLI.E'ENTARY N•OTES ..

The inrformation in this report was recently presented at the 12th International
System Safety Conference, New Orleans, LA, 5-10 Jul 94.

2a. DISPTRINUTIONITAVAILABILITY STATEMENT 120. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

Unless identified, and prevented or corrected, hazardous conditions can exist in the
software systems which are a part of the command and control systems of military
equipment, and can reduce equipment effectiveness or lead to equipment mishaps.
This report introduces a process for software system safety which identifies and
determines: hazardous conditions controlled by software, the extent of the safety
analysis required, the analytical techniques necessary to identify critical errors,
the design features necessary for corrective action, testing requirements to verifyand validate o.ectiv actions, and quirements to n+ .. f.ty ÷^U'U "t

a.A% o. "1t. 1 ctio s ,. , 1 . sa fety esu es t
an overall software system Hazard and Accident Tracking System (HATS). The CECOM
HATS, with its centralized source of software safety information, including hazard
controls, risk assessments, and reports generation, is a valuable tool to assist
engineers in developing requirements and establishing an integrated software safety
program.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Software Safety; Safety-Critical; Hazard and Accident Tracking 14
System; HATS; Software Trouble Report; Lessons Learned; 16. PICECODE
Safety Requirements/Criteria Analysis I

17. SECURITY CLASSIFICATION iS. SECURITY CLASSIFICATION 1B. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL
NSN 7540.01-80-4500 Standard Form 298 (Rev. 2-89)

w- e b ANSI Std 131I1
29PI-102

CONTENTS

1. Introduction 1

2. H-azard Identification ... 3

3. H azard A nalysis ... 4

4. Testing . .. 6

5. H azard Tracking 7

6. Conclusion .. 9

7. References .. 9

FIGURES

1. Software Safety Process Flow .. 2

2. Software vs Hardware Life Cycle 5

iii

nl(

ACRONYMS

CDR Critical Design Review

CSCI Computer Software Configuration Item

FMEA Failure Mode and Effect Analysis

FTA Fault Tree Analysis

HATS Hazard and Accident Tracking System

H/W Hardware

I/O Input and Output

PDR Preliminary Design Review

PHA Preliminary Hazard Analysis

SED Software Engineering Directorate (CECOM)

SRCA Safety Requirements/Criteria Analysis

SSCA Software Sneak Circuit Analysis

SSRA System Safety Risk Assessment

STR Software Trouble Report

S/W Software

TDRB Test Data Review Board

TIR Test Incident Report Aoaessson or '"

DTIC TAB 0
Urwounor)ad 0
J•t I.f cition

iv U%., Spoalax•).

1. Introduction

This report is intended for system and safety engineers who have a working knowledge in
the areas of software safety requirements, analysis, design and testing. The purpose of this
report is to formalize a process for software safety hazard identification, integration, and
tracking for CECOM supported systems. The intent is to identify and evaluate software
safety hazards and software development data and integrate these requirements into an existing
system safety hazard tracking system. This concept maintains the integrity of a total system
hazard tracking process that includes hardware, software, and firmware in accordance with
MIL-STD-882C. The report discusses the methodology used to develop additional
requirements for software development and software safety that are integrated into a system
safety hazard tracking system. Several of the major enhancements include the causes of
software safety hazards, the software hazard assessment codes, software versus hardware
development life-cycle milestones, software testing phases, priority levels, and areas of
software development needing improvement. An attractive feature, the development of a
lessons-learned report that is generated based on specific safety hazards, is one of the reasons
the requirements are being incorporated.

Background

The hazard identification, integration, and tracking methodology and techniques presented
in this report are based on the CECOM Software Safety Guide and MIL-STD-882C. Previous

CECOM Safety Office studies have indicated that the category of command and control
software programs associated with hazardous hardware functions merits the type of processes
presented in this report. Since most of the command and control systems have direct and
indirect control (i.e., both control and database generation/manipulation programs) over
hazardous functions, there is no advantage in performing extensive analysis on
computational/analytical programs unless the output is used to control safety critical functions.
Figure 1 is a flowchart of the CECOM software safety processes presented in this report.

The CECOM Safety Office currently enters all jur system specific data into the Hazard
and Accident Tracking System (HATS). In the future, CECOM could provide software data
and lessons-learned information to other agencies, with updates on a periodic basis. This final
product greatly enhances our Software System Safety program, and provides a training aid
that familiarizes system safety engineers with software safety design principles and
development of software safety specifications for new software safety critical applications.

The Report

The following sections piesent a methodology by which each individual can develop,
integrate and tailor his/her own software safety requirements and parameters for inclusion into

IL L) :D
n- w

2

LU ~ ~ .uuitjni

UU L

C-CD

C-CC

_0 z
U))

>.4U z-)~O> Wf JU-~J UJ -J

UJ U)
~U) >c

_j a.Cti

a. 0 c

I--

2- CAx-J0L

a: IA U

CD,
IL-

(LL. t I

V)-

4 0

(n a.

Li l- < A W_>
U.,

LL U.

U)0f

Z CA ~c C w V

(I-!J c>

a hazard tracking system: Section 2 describes the initial hazard identification process as
the first step in identifying hazardous conditions controlled by the software, and the level of
software safety effort/analysis required. Section 3 describes the software safety analysis
techniques required to evaluate safety critical errors and the design features needed for
corrective action. Section 4 discusses the software testing requirements that are imperative for
verification and validation of essential software safety requirements. Section 5 identifies the
requirements needed to integrate software safety requirements into an overall system safety
HATS.

2. Hazard Identification

Software safety hazard identification should be treated as an extension of the hardware
Preliminary Hazard Analysis (PHA). The PHA will ensure that any identified hazard controls
related to the hardware system are built into the software design, if possible. The overall
objective is to integrate the hardware analysis with the software command and control
subsystems (including the operator interface) to generate a complete operational hazard
analysis. The two main types of software safety hazards that the CECOM Safety Office has
identified and considered in this report are:

1. Command and control software which has direct control of the hardware, and which
might cause a hazard (improper command), allow a hazard to propagate (does not detect the
occurrence of a hazard), or allow a hazardous condition to go unnoticed by the operator.

2. Programs that generate the data base parameters upon which the command and control
software bases its decision.

It is worth noting that, in most cases, the standard software development process and test
standards for reliability and quality (i.e., DOD-STD-2i67A, 2168, and 498) cover the
executive software, I/O software, internal operation of the processor, and self-test software.
However, these areas need to be reviewed as part of the qualification testing to verify their
capabilities.

During the initial software safety hazard identification process, the system safety engineer
should review the PiIA, the functional capabilities of the hardware, and, in conjunction with
the contractor, evaluate the ways in which the software could create, or allow, a specific
problem to occur unmoticed. The integration of the PHA into the software safety analysis
would naturally coincide with the hardware Preliminary Design Review (PDK), and emphasize
the total system safety concept. Since the software PDR occurs after the hardware PDR, any
recommended software design changes identified from the PHA could be incorporated at this
time. Adhering to the natural progression of system safety analyses, the Safety
Requirements/Criteria Analysis (SRCA) in accordance with MIL-STD-882C is used to
perform the integrated analysis necessary to identify, define and/or refine the software safety

3

design requirements that should be included into the baseline software design documents. At
this point in time, the hardware design is established, and the recommendations contained in
the SRCA can be incorporated into the software Critical Design Review (CDR). Figure 2
illustrates the hardware versus software life-cycle milestones.

In some cases, the software safety requirements are not known in advance of the PHA. In
this case, it is important to include software safety specifications into the software requirement
documents. This will ensure traceability of requirements during the testing phase.

During evaluation of the PHA, the PHA should describe the hardware with a total system
approach. The PHA should describe the functions allocated to the software and their possible
undesired outcome. As part of the PHA, all identified hazards should be mapped to their
respective Computer Software Configuration Item (CSCI) for traceability to the CSCI unit
level. The results should identify critical functions that will designate critical software tasks.
These data, collected from the PHA (i.e., fault or condition, event phase, system effect,
hardware and software corrective action, initial software hazard assessment), will be essential
for tracking hazards related to software safety.

An initial software system safety checklist can be completed from the data contained in
the SRCA, and can be used to help derive requirements associated with the hardware
procedural control requirements. To ensure there are no conflicting safety requirements
contained in the checklist, the system safety engineer should review all the software
requirements. Concurrent engineering between the safety engineer and the software
developer/analyst is essential at this point in time. The details of the checklist include
program design considerations, failure of the computer processor and any other hardware
failures, memory partitioning, complete failures, operator interfaces, H/W-S/W interfaces,
illegal entries into critical routines, specific safing actions, timing considerations, anomaly
detection, etc. This checklist should be tailored as the software design matures from concept
analysis to top level design, and completed after the detailed design review. A comprehensive
and taiiored checklist should be utilized during the software testing phase.

3. Hazard Analysis

Software System Safety Hazard Analysis should address hazards resulting from
deficiencies in the requirement/specification, design, coding, and undesired events. Tile
methodology for extensive software safety analysis includes the above mentioned PHA and
checklists, as well as: analyzing hardware and software interfaces, examination of safety
critical single and multiple failure sequences, impact of component failures on overall system
safety, and evaluation of the design response to safety requirements. The techniques involved
in performing software system saf ty analysis include Fault Tree Analysis (FTA), Failure
Mode and Effect Analysis (FMEA), Software Sneak Circuit Ana.ysis (SSCA), Petri Nets, aad
design and code walk-throughs. Each of the analyses mentioned have specific advantages and

4

H94
C-)

z C

uCu
3:

041- qF-0>

0 0c

0 0)I

Z4

Iiii

an @~

4~~2 cc
<. o

z zu

u2z (1 1w LU j uU~

U.' J4

LI.

U)

I.L. LPIl

Z. I.-

5L r < CI

disadvantages in regard to their reasoning, approach, and results. The ultimate goal is to
show ways that software failures or errors can contribute to hazards and what software or
system hardware monitors, work-arounds or corrective procedures can be used to eliminate or
control their effect.

Many of these analyses are traditional hardware safety analyses that can be modified for
software safety. The tasks identified in MIL-STD-882C should address specific hazards that
have been identified and addressed as a component of the overall system. Tailoring of these
tasks is crucial in keeping the cost of the program down. The CECOM Safety Office has
directed these labor intensive analyses toward specific safety critical hazardous conditions that
exist with the command and control of firing and lasing systems.

The results from the SRCA and the Software Safety Design Analysis should be addressed
at the software Critical Design Review. Specific software safety design recommendations that
the CECOM Safety Office has incorporated into software safety critical programs include
watchdog timej.i, two-fault rule for enabling entrance into critical routines, independent
interrupt routines, timing constraints, fail-safe recovery, anid memory allocation.

After the software system safety analysis is completed, any software safety design
recommendations that become part of the software requirement design documents should be
incorporated into the configuration control process for verification, validation and tracking
purposes.

4. Testing

Software system safety testing verifies that the safety requirements (i.e., inhibits, traps,
interlocks) have been correctly implemented. Software safety testing also verifies that the
software functions safely within its intended environment. Many times software safety testing
reveals that soitware safety requirements are in direct conflict with military operational
doctrine. An example of this is firing into no-fire zones or boundary areas. A commander,
based on the threat, can make a tactical decision to fire in the vicinity of friendlies, and
violate safety design features. If this is the case, it is very important that a thorough review
of the intended operation of the system be conducted with the user community (i.e., Training
afiU Doctrine %t0111iu). Usually a salety criLIcaI Iunction will not be overridden by
operational doctrine. However, if the user decides that there is a work-around or operational
doctrine that overrides the incorporation of a software safety design requirement, then a
System Safety Risk Assessment (SSRA) is processed.

Software system safety test requirements are derived from the PHA, Checklists, and any
other system safety hazard analyses. Many requirements are also gained from the software
design documentation and test plans. As part of the software system safety test analysis,
safety engineers should evaluate safety-related test descriptions, procedures, cases, and

6

qualification criteria for areas needing software safety-critical test input. The next step should
be the identification of specific safety tests that will be required for each software safety-
critical module and program. At this point in time, the safety engineer should keep a log of
actual safety-related tests that are carried out, with the details and results of the testing. For
CECOM supported systems, this will aid in the development of software safety suitability for
release statements which are needed to field the software. The software safety suitability for
release statement is a comprehensive evaluation of the safety of the system, prepared by the
CECOM Safety Office. All other directorates within the command, including the Software
Engineering Directorate (SED), are required to prepare their suitability for release statc-ments.

Software safety testing may include, but is not limited to, computer software unit level
testing, hardware-software operator interface testing, stress testing, go-no-go path testing,
regression testing, and failure mode testing. It should be noted that any patches made to the
baseline version of software safety critical systems should undergo complete regression testing
for fielding as a complete package.

During the scoring of specific safety-critical tests, a safety engineer should be present to
evaluate their impact and determine/assign a priority level to the Software Trouble Report
(STR) or Test Incident Repoi-t (TIR). Priority levels rank from the highest (1) to the lowest
(5) and assess the software error. A priority 1 classification is defined as a software problem
that jeopardizes personnel safety, and a priority 2 classification specifies that the software
problem adversely affects the accomplishment of an operational or mission essential
capability, and no alternative work-around solution is known. For CECOM supported systems
any safety critical STR is given a priurity 1 or 2 and must be corrected. CECOM does not
classify any safety critical errors with a priority of 3 or less. The Test Data Review Board
(TDRB) is an excellent mechanism for sarety engineers to review, discuss, and evaluate
safety-critical STR's. A thorough review of the STR will reveal the actual software
requirement specification that initiated the test case and a trace can be done to locate the
source code where the software error occurred.

5. Hazard Tracking

In order to comprehensively track software safety-related hazards, the CECOM Safety
hazard tracking process was modificd to incorporate the total system safeiy approach as
delineated in MIL-STD-882C. MIL-STD..882C has integrated software safety requirements
into the system safety tasks, and has incorporated a process for software safety hazard
assessment, including a software safety hazard criticality matrix.

All the existing system safety fields can be used for systems that include software safety
requirements. The CECOM Safety Office has designed the interface to be system oriented
and many menus are context sensitive. If safety-critical software is not part of your system,
then many specific software safety-related fields will not be invoked.

7

Several of the processes and analyses discussed above include critical information that is
incorporated into the CECOM HATS. This information is integrated into system safety
data/hazards and follows the natural life-cycle of major system development, where
applicable. The tendency to separate hardware and software efforts would not lend itself to
the total system approach. Furthermore, the CECOM Safety Office has designed the HATS
fields/data to act as a lessons-learned repositcry, where specific safety reports can be
generated.

The additional software safety information/data that are imperative for an extensive hazard
tracking system, and are included in the CECOM HATS, include the following:

System Safety Data Record:
Software version.
Software requirements included in the contract.
Software design language.

- Type of standards that the software is designed to.
- What design guidelines are being used.
- Was a software safety checklist required.
- What type of software safety analysis was performed.
- Software PDR and CDR schedules.
- Software system test types.
- Software safety suitability for release statement.

System Safety Hazard Record:
- Added the "software version" as part of the system components.
- Added "hold" and "monitor" to the hazard status.
- Added "software safety analysis" and "software testing" to the "event that first

identified the hazard."
- Added "priority level assigned," if software testing identified the hazard.
- Added "software" to hazard type.
- Added "system or operation affected."
- Added the "software hazard assessment categories."
- Added "areas needing improvement."

It should be noted that several categories are included for the development of a system
safety lessons-learned repository, from which specific hazard reports can be generated.
Lessons learned are extremely important not only for developing system safety requirements,
but are crucial to the certification of software :ifety on any program. The CECOM Safety
Office realizes that lessons learned must augment training.

8

0N

6. Conclusion

The incorporation of Software System Safety requirements into the system safety hazard
tracking system teaches system safety engineers the processes, specifications, necessary
information, and hazards involved with a Software System Safety program. This also allows
safety engineers to obtain baseline data for new systems and establish a standardization of
requirements between contractors and Government. The ability to have a centralized source
of software safety information that includes hazard controls, risk assessments, and report
generation is a valuable tool. The CECOM HATS assists engineers in developing
requirements and establishing an integrated software safety program. In the future, the
CECOM Safety Office plans on researching the software hazard risk assessment process as it
relates to software priority classifications and problem reporting. In conclusion, this is a new
discipline which is still evolving and we must follow the logical progression of an integrated
system safety effort.

7. References

1. 12th International System Safety Conference Proceedings, "Identification,
Integration, and Tracking of Software System Safety Requirements," 6 July 94.

2. CECOM Safety Technical Report, TR-92-2, "Software System Safety Guide," DTIC
AD No. A250321, May 92.

3. CECOM Regulation, CECOM Reg 385-21, "Software System Safety," 19 Feb 91.

4. DOD-STD-2167A, "Defense System Software Development," 29 Feb 88.

5. DOD-STD-2168, "Defense System Software Quality Program," 29 April 88.

6. MIL-STD-498 (Draft), "Software Development and Documentation," 30 March 94.

7. MIL-STD-882C, "System Safety Program Requirements," 19 Jan 93.

9

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

